इस आर्टिकल में हम त्रिभुज की परिभाषा एवं त्रिभुज के प्रकार, त्रिभुज के गुण – Triangle In Hindi(types Formula), विभिन सूत्र ,त्रिभुज का परिमाप , त्रिभुज का छेत्रफल इत्यादि के बारे में चर्चा करेंगे और जानेगे की त्रिभुज कितने प्रकार के होते है? त्रिभुजों की सर्वागसमता और समरूप के नियम कौन कौन से है।
त्रिभुज की परिभाषा (Definition of Trianle in Hindi)
तीन रेखाखण्डों से घिरी हुई समतलीय आकृति त्रिभुज कहलाती है। त्रिभुज को ∆ से निरूपित किया जाता है। एक त्रिभुज की तीन भुजाएँ, तीन कोण और तीन शीर्ष होते हैं।
- त्रिभुज के तीनों कोणों का योग 180° होता है।
त्रिभुज के प्रकार (Types of Triangle in Hindi)
भुजाओं और कोंणो के आधार पर त्रिभुज को अलग अलग बांटा गया है। Tribhuj ke Prakar त्रिभुजों का विभाजन दो आधारों पर किया जाता है।
(A) भुजाओं के आधार पर त्रिभुजों के प्रकार (Types of Triangle on The Basis of Sides) :-
(1) विषमबाहु त्रिभुज (Scalene Triangle In Hindi) :-
विषमबाहु त्रिभुज के नाम से इसका अर्थ प्रतीत होता है की वह त्रिभुज जिसकी भुजाएँ विषम हो। इस त्रिभुज की सभी भुजाओ का माप भिन्न – भिन्न होता है।
विषमबाहु त्रिभुज की परिभाषा :-
वह त्रिभुज जिसकी सभी भुजाएँ भिन्न भिन्न लम्बाइयों की होती है , विषमबाहु त्रिभुज कहलाता है।
विषमबाहु त्रिभुज का क्षेत्रफल :-1/2 x आधार x उंचाई विषमबाहु त्रिभुज का परिमाप :- तीनो भुजाओं की लम्बाई का योग
(2) समद्विबाहु त्रिभुज (Isosceles Triangle In Hindi) :-
समद्विबाहु त्रिभुज (Samdibahu Tribhuj) से सामान्य शब्दों के अर्थ है की ऐसा त्रिभुज जिसकी कोई दो भुजाये बराबर हो।
समद्विबाहु त्रिभुज की परिभाषा (Samdibahu Tribhuj ki Paribhasha) :-
वह त्रिभुज जिसकी दो भुजाएँ बराबर हो , समद्विबाहु त्रिभुज कहलाता है। समद्विबाहु त्रिभुज की असमान भुजा उसका आधार कहलाती है तथा आधार पर बने दोनों कोण एक दूसरे के बराबर होते हैं ।
समद्विबाहु त्रिभुज का परिमाप (Samdibahu Tribhuj ka Parimaap) :- तीनो भुजाओ की लम्बाई का योग समद्विबाहु त्रिभुज का क्षेत्रफल (Samdibahu Tribhuj ka chetrafal) :- 1/2 x आधार x उंचाई
(3) समबाहु त्रिभुज (Equilateral Triangle In Hindi) :-
समबाहु त्रिभुज से स्पष्ट होता है की ऐसा त्रिभुज जिसकी सभी भुजाएँ (बाहु) एक नाप की अर्थात बराबर हो।
समबाहु त्रिभुज की परिभाषा :-
वह त्रिभुज जिसकी तीनो भुजाए बराबर हो, समबाहु त्रिभुज कहलाता है। समबाहु त्रिभुज का प्रत्येक कोण 60° का होता है ।
समबाहु त्रिभुज का परिमाप (Sambahu Tribhuj ka Parimaap) :- 3 x एक भुजा की लम्बाई समबाहु त्रिभुज का छेत्रफल (Sambahu Tribhuj ka Chetrafal) :- v-- 3 / 4 x भुजा
(B) कोणों के आधार पर त्रिभुजों के प्रकार ( Types Of Triangle on the Basis Of Angles) :-
(1) समकोण त्रिभुज (Right angled Triangle In Hindi ) :-
वह त्रिभुज जिसके एक कोण की माप 90० हो, समकोण त्रिभुज कहलाता है। समकोण की सम्मुख भुजा को त्रिभुज का कर्ण कहते है। शेष दो भुजाओ को क्रमश: आधार और लम्ब कहते है।
( कर्ण )2 = ( आधार )2 + ( लम्ब )2
समकोण त्रिभुज में समकोण के सामने वाली भुजा कर्ण तथा अन्य दोनों भुजाएँ उसके पाद कहलाती हैं ।
(2) न्यूनकोण त्रिभुज (Acute angled Triangle in Hindi) :-
वह त्रिभुज जिसके प्रत्येक कोण की मान 0० से अधिक परन्तु 90० से कम हो, न्यूनकोण त्रिभुज कहलाता है।
(3) अधिककोण त्रिभुज ( Obtuse angled Triangle in Hindi)
वह त्रिभुज जिसके एक कोण की माप 90० से अधिक परन्तु 180० से कम हो, अधिककोण त्रिभुज कहलाता है।
त्रिभुज का परिमाप (Perimeter of a Triangle) :-
परिमाप से तातपर्य यह होता ह की किसी आकृति वस्तु इत्यादि के चारो और का माप से है।
त्रिभुज की तीनो भुजाओ की लम्बाइयों का योग त्रिभुज का परिमाप कहलाता है।
∆ABC का परिमाप = AB + BC + CA
त्रिभुज से सम्बंधित कुछ परिभाषित शब्द
(1) माध्यिका (Median) :-
त्रिभुज की किसी भुजा के मध्य बिंदु को सम्मुख शीर्ष से जोड़ने वाले रेखाखण्ड को त्रिभुज की माध्यिका कहते है।
एक त्रिभुज की तीन माध्यिकाएँ होती हैं ।
(2) शीर्षलम्ब (Altitude) :-
त्रिभुज के किसी शीर्ष से सम्मुख भुजा पर डाला गया लम्ब त्रिभुज का शीर्ष कहलाता है। जिस भुजा पर लम्ब डाला जाता है उसे आधार कहते है।
नोट : किसी त्रिभुज के शीर्ष लम्ब संगामी होते है। किसी त्रिभुज के तीनो शीर्षलम्बो का प्रतिछेद बिंदु त्रिभुज का लंबकेन्द्र कहलाता है। एक त्रिभुज के तीन शीर्षलंब होते हैं ।
(3) अन्त:केंद्र (Incentre) :-
किसी त्रिभुज के तीनो कोंण अर्द्धको का प्रतिच्छेद बिंदु अन्त:केंद्र कहलाता है।
(4) परिकेन्द्र (Circumcentre) :-
किसी त्रिभुज की भुजाओ के लम्ब अर्द्धको का प्रतिच्छेद बिंदु त्रिभुज का परिकेन्द्र कहलाता है।
सर्वांगसम त्रिभुज (Congruent Triangle)
त्रिभुज के सभी कोण व भुजाएँ दूसरे त्रिभुज के संगत कोंणो व संगत भुजाओं के बराबर हों, तो दोनों त्रिभुज सर्वांगसम कहलाते हैं।
प्रत्येक त्रिभुज स्वयं का सर्वांगसम होता है।
त्रिभुजों की सर्वांगसमता नियम अभिगृहित (Triangle Congruency Axiom)
(1) SAS सर्वांगसमता अभिगृहीत नियम:- यदि एक त्रिभुज की दो भुजाओं व उनके बीच का कोण दूसरे त्रिभुज की संगत भुजाओं व संगत कोण के बराबर हो, तो वे दोनों त्रिभुज सर्वांगसम होते हैं।
(2) SAA सर्वांगसमता अभिगृहीत नियम :- यदि एक त्रिभुज के दो कोण व इन कोणों की उभयनिष्ठ भुजा दूसरे त्रिभुज के संगत कोणों व उभयनिष्ठ भुजा के बराबर हो, तो वे दोनों त्रिभज सर्वांगसम होते हैं।
(3) SSS सर्वांगसमता अभिगृहीत नियम :- यदि एक त्रिभुज की तीनों भुजाएँ दुसरे त्रिभुज की तीनों संगत भुजाओं के बराबर हो, तो वे दोनों
त्रिभुज सर्वांगसम होते हैं।
(4) RHS सर्वांगसमता अभिगृहीत नियम :- यदि एक त्रिभुज का कर्ण व एक भुजा दुसरे त्रिभुज के कर्ण और संगत भुजा के बराबर हो तो वे दोनों त्रिभुज सर्वांगसम होते हैं।
दो त्रिभुजों में AAA सर्वांगसमता नहीं होती है। सभी सर्वांगसम आकृतियाँ समरूप होती हैं परंतु इसका विलोम सत्य नहीं है।
पाइथागोरस प्रमेय (Pythagoras Theorem in Hindi)
किसी समकोण त्रिभुज में कर्ण का वर्ग शेष दो भुजाओं के वर्गों के योगफल के बराबर होता है।
( कर्ण )2 = ( आधार )2 + ( लम्ब )2 AC2 = AB2+ BC2
त्रिभुजों के गुण कुछ उपयोगी परिणाम (Some Useful Results on Triangles)
- त्रिभुज के तीनों कोणों का योग 180° होता है।
- त्रिभुज की एक भुजा को आगे बढ़ाने पर बनने वाला बहिष्कोण दो सम्मुख अन्त:कोणों के योग के
बराबर होता त्रिभुज का बहिष्कोण किसी भी सम्मुख अन्त:कोण से बड़ा होता है। - त्रिभुज की किन्हीं दो भुजाओं का योग तीसरी भुजा से बड़ा होता है।
- त्रिभुज की कोई दो भुजाओं की मापों का अंतर, तीसरी भुजा की माप से कम होता है ।
- यदि किसी त्रिभुज की एक भुजा के समांतर अन्य दो भुजाओं को भिन्न-भिन्न बिंदुओं पर
प्रतिच्छेद करने के लिए, एक रेखा खींची जाए, तो ये अन्य दो भुजाएँ एक ही अनुपात में विभाजित हो जाती हैं। - यदि एक रेखा किसी त्रिभुज की दो भुजाओं को एक ही अनुपात में विभाजित करे, तो यह रेखा तीसरी भुजा के समांतर होती है।
- यदि दो त्रिभुजों में, संगत कोण बराबर हों, तो उनकी संगत भुजाएँ एक ही अनुपात में होती हैं
और इसीलिए दोनों त्रिभुज समरूप होते हैं (AAA समरूपता कसौटी) । - यदि दो त्रिभुजों में, एक त्रिभुज के दो कोण क्रमशः दूसरे त्रिभुज के दो कोणों के बराबर हों, तो दोनों त्रिभुज
समरूप होते हैं (AA समरूपता कसौटी)। - यदि दो त्रिभुजों में, संगत भुजाएँ एक ही अनुपात में हों, तो उनके संगत कोण बराबर होते हैं और
इसीलिए दोनों त्रिभुज समरूप होते हैं (SSS समरूपता कसौटी)। - यदि एक त्रिभुज का एक कोण दूसरे त्रिभुज के एक कोण के बराबर हो तथा इन कोणों को अंतर्गत करने वाली
भुजाएँ एक ही अनुपात में हों, तो दोनों त्रिभुज समरूप होते हैं (SAS समरूपता कसौटी)। - यदि एक त्रिभुज में, किसी एक भुजा का वर्ग अन्य दो भुजाओं के वर्गों के योग के बराबर हो, तो पहली भुजा का
सम्मुख कोण समकोण होता है।
अन्य अध्ययन सामग्री
कोणों के प्रकार (Types Of Angles In Hindi) परिभाषा, उदाहरण (Kon Ke Prakar)
पूर्ण संख्या किसे कहते हैं ? परिभाषा, गुण-धर्म (What is Whole Number in Hindi)
हिंदी गिनती शब्दों में (Hindi Ginti 1 To 100 in words) | Hindi Numbers 1 to 100
पूर्णांक संख्या किसे कहते हैं? What are The Integers Numbers In Hindi
परिमेय संख्या किसे कहते हैं? परिभाषा, Rational number in hindi(कक्षा 8 व 9) class 9
सम्बंधित प्रश्न
Q.1. त्रिभुज के तीनों कोणों का योग कितना होता है ?
उतर :- एक त्रिभुज के तीनों कोणों का योग 180° होता है ।
Q. 2. त्रिभुज का बाह्य कोण किसे कहते है ?
उतर :- किसी त्रिभुज का बाह्य कोण किसी एक भुजा को एक ही ओर बढ़ाने पर बनता है । प्रत्येक शीर्ष पर, एक भुजा को दो प्रकार से बढ़ाकर दो बाह्य कोण बनाए जा सकते हैं ।
Q.3. त्रिभुज की परिभाषा क्या है ?
उतर :- तीन प्रतिच्छेदी रेखाओं द्वारा बनाई गई एक बंद आकृति (closed figure) एक त्रिभुज (triangle) कहलाती है
Q.4. त्रिभुज किसे कहते है ?
उतर :-तीन रेखाखण्डों से घिरी हुई बंद आकृति त्रिभुज कहलाती है।
Q.5. त्रिभुज का क्षेत्रफल का सूत्र क्या है ?
उतर :- 1/2 x आधार x लंब